If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=105-9t-16t^2
We move all terms to the left:
0-(105-9t-16t^2)=0
We add all the numbers together, and all the variables
-(105-9t-16t^2)=0
We get rid of parentheses
16t^2+9t-105=0
a = 16; b = 9; c = -105;
Δ = b2-4ac
Δ = 92-4·16·(-105)
Δ = 6801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{6801}}{2*16}=\frac{-9-\sqrt{6801}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{6801}}{2*16}=\frac{-9+\sqrt{6801}}{32} $
| 36^−3x+3=(1/216)^x+1 | | 1.7-c6=56 | | 219=1-v | | -130=-10(k+3) | | 5x+33=8x-12 | | 9w=5w+8 | | 8=5+n/2 | | -y/3=-59 | | 8(1+7x)-5(5+2x)=75 | | -10x-5=-35 | | 91=9u+1 | | -7x-3x=40 | | -5(u+6)=10 | | 3-(3-7x)=7x | | 6(3x-5)=36 | | 8p+12p=60 | | 4×x=28 | | 44=32+u | | -7x-3=x+13 | | -19=a/2 | | 1/3(x-1)+2x=5x+5 | | 9=1+15t-5t^2 | | 1/2(6y+6)-7=-1/3(3y-12) | | 2,944=46(p+30) | | 36-v=188 | | 196=50-v | | 140=140-8t-16t^2 | | 3^4x−9=1/243 | | 2,944=46(p+30) | | 26=2(-5-3x)-3(x+3) | | --3t-8+7t=34+9t | | 3^4x+3=11 |